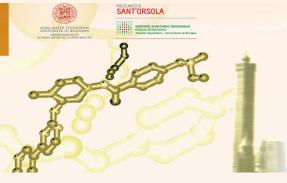


President: Pier Luigi Zinzani Co-President: Michele Cavo


Bologna, Royal Hotel Carlton January 15-17, 2024

Next Gen CAR-T

Stephen J. Schuster, M.D.

University of Pennsylvania, Philadelphia, PA, USA

President: Pier Luigi Zinzani Co-President: Michele Cavo

Bologna, Royal Hotel Carlton January 15-17, 2024

Disclosures of Prof. Stephen J. Schuster

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
AbbVie						х	
AstraZeneca						х	
BeiGene						х	
Caribou Biotech						х	Steering committee
Fate Therapeutics							Safety DSMB
Genentech/Roche	x					х	Steering committee
Genmab	х					х	Steering committee
Incyte/Morphosys						х	Honoraria for presentation
Kite Pharmaceuticals						х	
Legend Biotech						х	Steering committee
Novartis						х	Steering committee
Mustang Biotech						х	
Nordic Nanovector						х	Steering committee
Takeda							Honoraria for presentation

Who needs a new CAR?

Topics

- Large B-cell lymphomas (LBCL)
 - an unmet need remains
 - defining those LBCL patients with an unmet need
 - improving second generation anti-CD19 CAR-T products
 - overcoming tumor-specific mechanisms of resistance
- Other lymphomas require new targets
 - T-cell lymphomas

Large B-cell lymphomas: the remaining unmet need

~ 2/3 of patients fail to achieve durable responses with commercially available CAR-T products as 3rd-line therapy

Axicabtagene ciloleucel ¹	Tisagenlecleucel ²	Lisocabtagene maraleucel ³	
ZUMA-1 ¹ : axi-cel as ≥ 3rd-line therapy for LBCL N = 101 Median follow-up: 63.1 months Estimated 5-year EFS: 30.3%	JULIET ² : tisa-cel as > 3rd-line therapy for LBCL N = 115 Median follow-up: 40·3 months Estimated 40-month PFS:~30%	<pre>TRANSCEND³: liso-cel as ≥ 3rd-line therapy LBCL N = 256 Median follow-up: 12.3 months Estimated 18-month PFS: 42.1%</pre>	
100 100 <th>Number at risk Time from infusion (months) (monther consent) 115(0) 47(11) 39(13) 36(14) 31(16) 30(17) 26(19) 24(21) 21(24) 21(24) 21(24) 11(23) 2(42) 1(44) 0(44)</th> <th>Lotinated 10-month 10.42.170</th>	Number at risk Time from infusion (months) (monther consent) 115(0) 47(11) 39(13) 36(14) 31(16) 30(17) 26(19) 24(21) 21(24) 21(24) 21(24) 11(23) 2(42) 1(44) 0(44)	Lotinated 10-month 10.42.170	

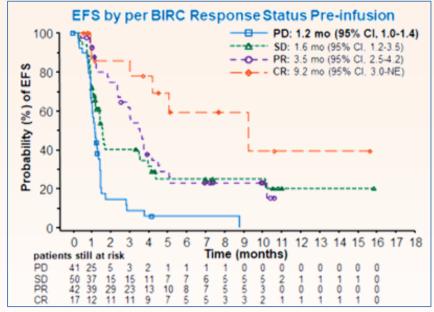
¹Neelapu SS, et al. Blood. 2023;Epub ahead of print; ²Schuster SJ, et al. Lancet Oncol 2021;22(10):1403-1415; ³Abramson J, et al. Lancet. 2020;396(10254):839-852.

Large B-cell lymphomas: the remaining unmet need

As 2nd-line therapy, ~1/2 of patients will have disease progression or need new lymphoma treatment by 2 years after available CAR-T products

Axicabtagene ciloleucel ¹	Lisocabtagene maraleucel ²	
ZUMA-7 ¹ : axi-cel as $\geq 2^{nd}$ -line therapy for r/r LBCL	TRANSFORM ² : liso-cel as $\geq 2^{nd}$ -line therapy for r/r LBCL	
N = 180	N = 92	
Median follow-up: 24.9 months	Median follow-up: 17.5 months	
Estimated 24-month EFS: 41% (95% CI, 33-48)	Estimated 18-month EFS: 52.6% (95% Cl, 42.3-62.9)	
100 90 10 90 10 0 10 0 0 2 4 6 8 10 0 0 2 4 6 8 10 12 14 16 18 20 20 10 0 0 2 4 6 8 10 12 14 16 16 16 16 16 16 16 16 16 16	1.0 0.9 0.8 0.6 0.5 0.5 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2	
NoatRisk 180 163 106 92 91 87 85 82 74 67 52 40 26 12 12 6	SOC 92 66 39 32 27 22 19 19 12 12 10 3 2 2 2 0 Liso-cel 92 87 76 62 59 55 52 48 45 24 20 17 5 3 3 3 0	

¹Locke FL, et al. N Engl J Med. 2022;386(7):640-654; ²Abramson, et al. Blood. 2023;141(14):1675-1684.


The question is,

How can we improve these results?

The easy answer is,

Treat patients who are likely to respond and treat those destined to fail on clinical trials.

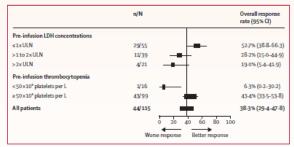
• Disease status at the time of CAR-T infusion impacts best response post-infusion and EFS - Data from the BELINDA trial: tisagenlecleucel vs SOC

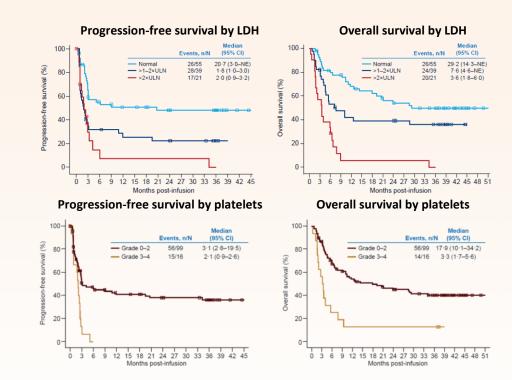
Multivariate Logistic Regression Model for Post-Infusion Best Overall Response (CR/PR vs SD/PD/UNK) in Arm A (second-line CAR-T)			
	Odds Ratio Estimates		
Variable	Point Estimate	95% Wald Cor	fidence Limits
CR/PR before infusion vs. SD/PD before infusion at mean cell dose	7.75 3.23 18.62		18.62

The odds ratio is the odds of having a best overall response of CR/PR vs. SD/PD/UNK; *i.e.*, an odds ratio >1 means patients are more likely to have a best overall response of CR/PR.

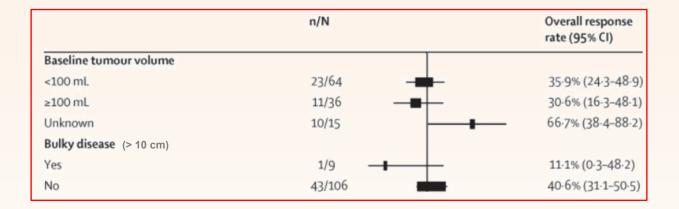
EFS time is relative to date of tisagenlecleucel infusion; median time from pre-infusion disease assessment to infusion was 10 days (range, 2-57; Q1-Q3, 8-15). EFS events defined as PD/SD after day 71 from randomization or death at any time.

Bishop et al. N Engl J Med. 2021 Dec 14. Epub

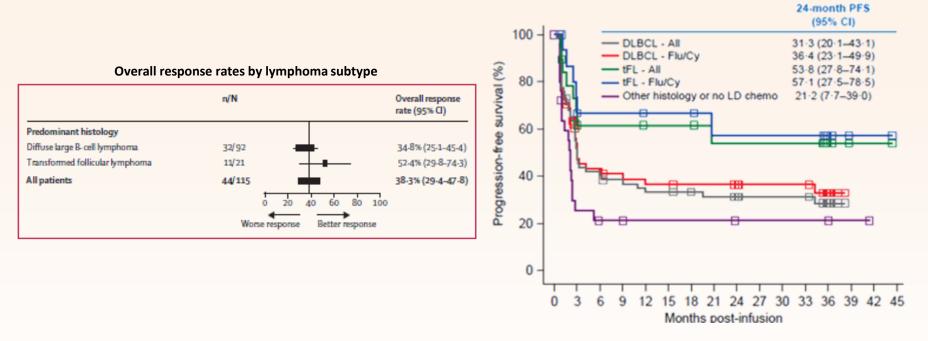

• Pre-infusion LDH and platelet count impact CAR-T response and survival outcomes - Data from the JULIET trial: Phase 2 trial of tisagenlecleucel in r/r LBCL


Multivariable analysis				
Predictive Factors from Univariable Analysis	Responders/Patients	Odds Ratio (95% CI)		
LDH				
≤ x ULN	29/55	2 74 (0 71 10 56)		
>2 x ULN	4/21	2.74 (0.71-10.56)		
>1 - 2 x ULN	11/39	0.07(0.00.4.05)		
>2 x ULN	4/21	0.97 (0.23-4.06)		
Thrombocytopenia				
CTCAE grades 0 - 2	43/99	7.23 (0.84-62.31)		
CTCAE grades 3 - 4	1/16	7.23 (0.84-62.31)		

• Lab analytes are defined as the closest time before or on the day of infusion - 93% of values fell on the day of infusion


•Thrombocytopenia: grade 4, <25; grade 3, 25-50; grade 2, 50-75; grade 1, 75-LLN × 10⁹/L

Overall response rates by LDH and platelet count



- Tumor bulk and its impact on response ("size matters")
 - Data from the JULIET trial: Phase 2 trial of tisagenlecleucel in r/r LBCL

- Subtype of lymphoma impacts CAR-T response rates and progression-free survival
 - Data from the JULIET trial: Phase 2 trial of tisagenlecleucel in r/r LBCL

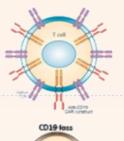


Schuster SJ, et al. Lancet Oncol. 2021;22(10):1403-1415.

Determinants of CAR-T success or failure are probably disease-specific

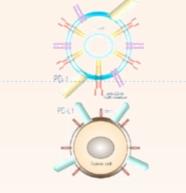
- Early CTL019 efficacy data from Penn and CHOP

Disease	Ν	CR rate	Median DOR	Median Follow-Up
r/r ALL ¹	75	81%	Not Reached	13.1 mo (2.1-23.5)
r/r FL ²	14	71%	Not Reached	28.6 mo (3.5-37.9)
r/r DLBCL ²	14	43%	Not Reached	46.8 mo (6.0-54.6)*
r/r CLL ³	14	29%	40.0 mo (21.0-53.0)	19.0 mo (6.0-53.0)

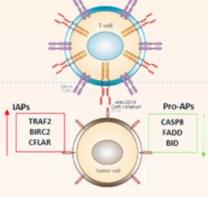


*Data updated December 2018

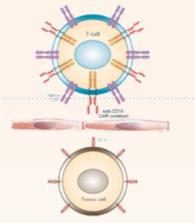
¹Maude S, et al. NEJM. 2018;378(5): 439-448; ²Schuster SJ, et al. N Engl J Med. 2017;377(26):2545-2554; ³Porter DL, et al. Sci Transl Med. 2015; 7(303): 1-12.


Mechanisms of resistance to CAR-T

• Putative mechanisms of tumor resistance to CAR T cells in DLBCL


CD19 antigen loss

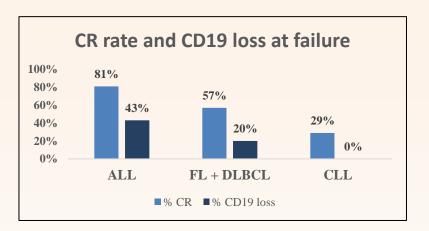
 acquired mutations and alternative splicing of CD19 (Sotillo et al. Cancer Disc. 2015)


T-cell exhaustion/hypofunction

- mediated by inhibitory ligands on tumor cells and cells in the TME
- peripheral self-tolerance (B cell recovery? late relapses?)
- TME-induced T cell hypofunction (reversible)

Intrinsic tumor resistance

- loss of death receptor signaling molecules causes resistance to CAR T in vitro + in vivo
- failed CAR-T assoc./w lower death receptor-assoc. gene expression by tumor cells (Singh, et al. Cancer Disc. 2020)


Insufficient T-cell infiltration

- T cells paralysis
- physiologic factors (high interstitial fluid pressure, hypoxia, pH)

• CD19 loss or downregulation: early CTL019 efficacy data from Penn and CHOP

Disease	Ν	CD19 loss at PD
ALL ¹	30	3/7
FL + DLBCL ²	28	1/5
CLL ³	14	0/10

• Penn and CHOP Data

More responsive diseases seem more likely to fail due to CD19 loss

• Less responsive diseases, like CLL, require alternative explanations

¹Maude S, et al. NEJM. 2014; 371(16): 1507-1517; ²Schuster SJ, et al. N Engl J Med. 2017;377(26):2545-2554; ³Porter DL, personal communication 2018 Mar 12.

• Active and upcoming clinical trials at UPenn addressing tumor-specific mechanisms of resistance

CD19 antigen loss

Phase II study of dual targeting of CD19 and CD20 antigens using CD19-CAR T cells and CD20-BsAb

> PI: E. Chong NCT04889716 • Recruiting

T-cell exhaustion/hypofunction

Interleukin-18 secreting anti-CD19 CAR T cells [huCART19-IL18 cells]

> PI: J. Svoboda NCT04684563

Recruiting

KIR-CAR/Dap12-modified T cells

• Pre-clinical completed^{*} *Wang, et al. Cancer Imm Res 2015; 3; 815–26.

> • Clinical trial planned PI: S. Schuster

CD5 knockout CAR T cells

- Pre-clinical completed*
- *Patel RP, ASH, 2022 #662
- Clinical trial planned PI: S. Barta

Intrinsic tumor resistance

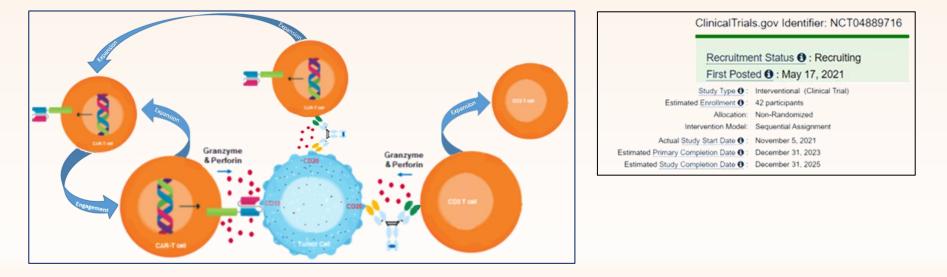
Venetoclax-resistant CAR T overexpressing mutated BCL-2(F104L) [BCL-2(F104L)-CART19]

• Pre-clinical completed^{*} *Lee, et al. Cancer Discov 2022;12:2372–91.

> Clinical trial planned PI: M. Ruella

Insufficient T-cell infiltration

Under non-disclosure agreement


Active UPenn clinical trial addressing CD19 antigen loss or downregulation

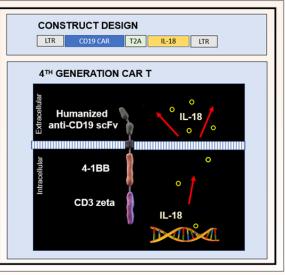
Phase II Study of Dual Targeting of CD19 and CD20 Antigens Using Sequential CD19-directed 4-1BB-CD3ζ CAR-T Cells Followed by Mosunetuzumab or Glofitamab in Relapsed or Refractory DLBCL or Transformed FL

Rationale:

Early administration of CD20:CD3 bispecific antibodies (mosunetuzumab or glofitamab) after CD19-directed CAR-T cell therapy may enhance tumor cytotoxicity by:

- synergistic or additive B cell cytotoxicity via simultaneously targeting two different B cell (tumor) antigens, i.e., CD19 and CD20
- reducing CD19-negative tumor cell escape by targeting a second B cell antigen
- enhancing in vivo expansion of CAR T cells, as observed for T cells in general, after bispecific T cell engaging antibody exposure

Active UPenn clinical trial addressing T cell exhaustion

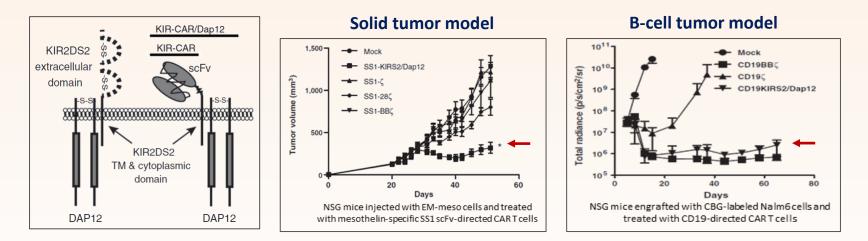

Phase I Trial of huCART19-IL18 Cells in Patients With Relapsed or Refractory CD19+ Cancers

<u>Rationale</u>: to utilize IL-18 as a pro-inflammatory cytokine to:

- enhance CAR T cell proliferation
- recruit additional immune cells into the TME to mediate antitumor effects toward tumor cells resistant to CAR T cells
- mitigate the potential impact of CAR T cell exhaustion

ClinicalTrials.go	v ID 🤇	NCT04684563	Sponsor 🕕 University of Pennsylvania	
Brief Summary		The purpose of this study is to find the maximum dose of huCART19-IL18 cells that is safe for use in humans with CD19+ cancers.		
Detailed Description			kin Lymphoma (NHL) mphocytic Leukemia (CLL) phoblastic Leukemia (ALL)	
Study Type	ICMJE	Interventional		
Study Phase	ICMJE	Phase 1		
Study Design	ICMJE	Allocation:	Non-Randomized	
		Interventional Model:	Parallel Assignment	
		Masking:	None (Open Label)	
		Primary Purpose:	Treatment	
Condition	ICMJE	Chronic Lymphocytic I	Leukemia	
		Non-hodgkin Lymphor	na	
		Acute Lymphoblastic I	Leukemia Treated, so far:	
Recruitment Status	ICMJE	Recruiting	NHL, n = 21	
Enrollment (Estimated)	ICMJE	72	CLL, n = 1	
(Submitted: 2023-03-30)				
Original Enrollment (Estin	nated)	30	ALL, n = 2	
(Submitted: 2020-12-21)	ICMJE			
(,	ICMUE	2021.05.05		
Study Start Date (Actual)	ICMJE	2021-05-06		

huCART19-IL18

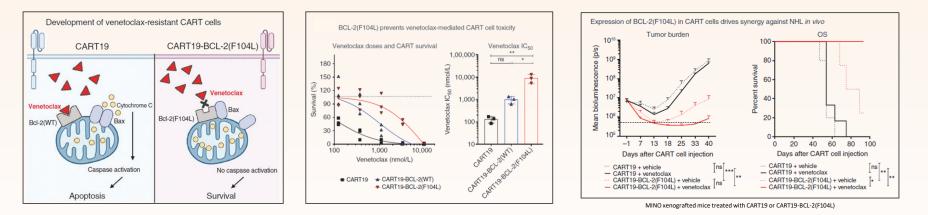


PI: Jakub Svoboda

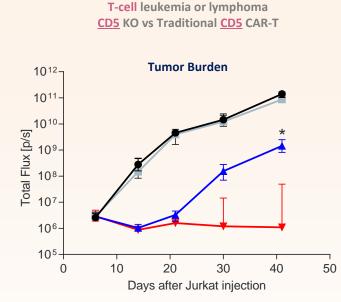
• Planned UPenn clinical trial addressing T cell exhaustion or hypofunction

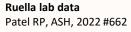
CD19-directed KIR-CAR/DAP12-modified cells for CD19+ lymphomas

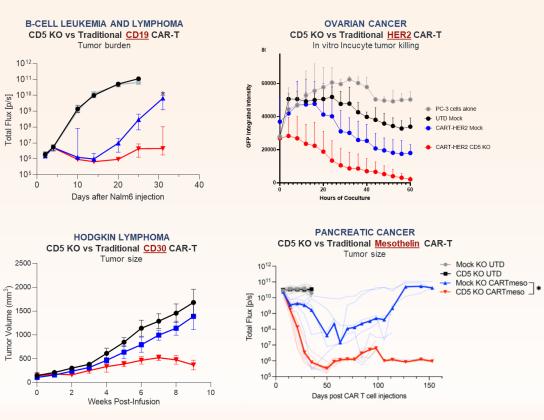
<u>Rationale</u>: KIR-CAR/Dap12 expressing CAR T cells have potent *in vivo* antitumor activity that is resistant to the tumor- and/or TME-induced T-cell hypofunction observed with CD3ζ-based CAR T cells¹. This potent activity *may* be of benefit in large B-cell lymphomas with bulky disease.



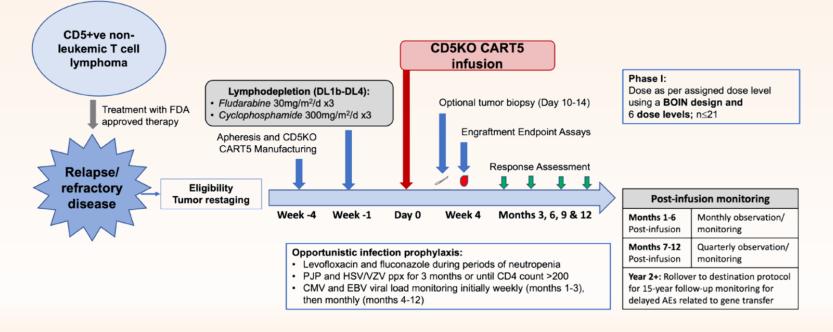
¹Moon, et al. Clin Cancer Res 2014;20:4262–73. ²Wang, et al. Cancer Imm Res 2015;3:815-826. (*data show on the right*)


• Planned UPenn clinical trial addressing intrinsic tumor resistance to CAR-T


Venetoclax-resistant CAR-T cells engineered to express mutated BCL-2(F104L) for combination therapy


<u>Rationale</u>: BCL-2 <u>overexpression in CAR T cells</u> and <u>inhibition in tumor cells</u> enhances CAR T cell efficacy in pre-clinical models by reducing apoptosis in CAR T cells and enhancing apoptosis in cancer cells. Thus, combination venetoclax and CAR T cell therapy is a compelling approach for B-cell lymphomas failing standard CAR T therapy.

CD5 KO CAR T cells enhance efficacy in multiple liquid + solid tumor models



Phase I clinical trial of CD5 KO CART5 for T-cell lymphomas

Upcoming UPenn clinical trial for 2024

PI: Stefan Barta

- Patients with relapsed or refractory CD5+ nodal non-leukemic T cell lymphoma
- Bayesian optimal interval design for dose level assignment

President: Pier Luigi Zinzani Co-President: Michele Cavo

Bologna, Royal Hotel Carlton January 15-17, 2024

Grazie molte / Many Thanks!